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Abstract
The goal of this work is to design and implement a library (software engine) which would be re-
sponsible for network communication between programs that involve real-time motion of multiple
objects, such as physics simulations, computer games.

Transmitting and receiving data, which describe motion of objects, through the Internet may be
a tough challenge. Typical problems include various network latencies as well as unreliability of
communication channels. However, by using certain algorithms, it is possible to make clients feel as
if they were a part of one, consistent physics simulation, even though they can be spread around the
world.
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1 Introduction
Internet access is getting faster and cheaper every day. However, network latencies are inevitable and
still are (and probably will be for a long time) a major problem when it comes to transferring data in
order to provide a real-time interactive physics simulation.

Generally, programmers who work on networked simulations (or action games) have to deal
with network lags on their own. In this work is presented — a network engine for the
interactive real-time simulations. Using this piece of software, programmers can easily focus on
physical aspects of the simulation and not to concern about network issues whatsoever.

A synchronization of physics between sides who participate in simulation (hereinafter “clients”)
and side which manages network connections of participants (hereinafter “server”) may be done
in a few ways. This work describes the most notable approaches. They are also implemented, so
one can switch between synchronization methods to see the differences and choose between them
according to the current needs.

Compression is also useful. zlib [7] is used in order to compress every big network packet. Delta
compression is also supported. Furthermore, lossy compression of floating-point numbers has been
implemented so that programmers can reduce the precision when it is not essential.

Section 2 provides an introduction into the subject. In section 3, the main theoretical issues will
be presented in details. In section 4, project will be designed from scratch. Section 5
covers its implementation and points out the most interesting practical issues. Finally, section 6
provides conclusions.

1.1 Goals
Goals of this work are defined as follows:

• discuss the methods and problems related to effective network synchronization of multiple
objects

• design reusable library which facilitates creating network real-time applications

• offer efficient implementation

• provide easy to understand examples of usage

1.2 Tools
The C++ language (see [12]) has been chosen for the implementation as it is a compromise solution
between the need of some high-level features and performance. Not only is it convenient to use
Object-Oriented Programming paradigm (OOP), but it is also helpful in achieving clear code and
making its maintenance easier. It is natural to use this paradigm when it comes to representing
physical objects in virtual reality — this is the reason why OOP is so commonly used in game
programming.

Simple DirectMedia Layer (SDL) is a cross-platform multimedia library designed to provide low
level access to audio, keyboard, mouse, joystick, 3D hardware via OpenGL, and 2D video frame-
buffer [1]. Yet engine does not handle rendering or multimedia at all — SDL is needed
merely to handle threads and delays in a cross-platform way. It works with C and C++, so it is
perfect for this project.
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Berkley Sockets API is used to provide high performance in communication via UDP/IP proto-
col. WinSock 2 is an API which is almost completely compatible with Berkley Sockets. It allows
to use such mechanisms in Windows operating systems. See [4] for complete reference to socket
programming.

Blossom Math [11] is a library which includes fair implementation of mathematical entities such
as vectors, matrices, planes. It is a part of the Blossom Engine — a set of libraries for game develop-
ers. uses its vec3 class to store physical properties of objects.

1.3 Features
Compact list of features includes:

• real-time synchronization of multiple objects

• each object consists of some physical properties and multi-purpose binary buffer

• events (possibility of reliable delivering through unreliable communication channel)

• physics rewinding algorithm

• capability of sending neighbouring objects only

• clients’ data packets consist of bits that denote pressed keys

• scalable floating point precision

• relativity of transferred positions

• lossless compression, Delta Compression

• connections management

• lag information

2 Background
Basic information, essential to handle network programming, has to be discussed first. One might
wish to proceed to section 3 if he or she is familiar with the basics of programming network applica-
tions and computer networking in general.

2.1 Communication Overview
Interactive network simulation is a kind of distributed application — a number of programs need
to communicate over a computer network in a specific way (using an a priori defined protocol) to
provide sensation that clients participate in one virtual world. It is assumed that clients use the
Internet in order to transmit and receive data.

The most common way to organize communication is to use Client-Server Model. That is to say,
one program needs to be dedicated to the server. Each client has to establish a network connection
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Figure 1: Client-Server Architecture

with it, thus the server is the centre of this architecture. Client-Server Model is presented in the Fig-
ure 1. Other forms of organizing communication are rather impractical to meet the needs described
in the previous paragraph.

Another concept, every network programmer must be aware of, is the Open Systems Interconnec-
tion model (OSI model) [6]. It divides the whole process of intercommunication into seven layers.
Each of them is a collection of similar functions (provides some functionality) and communicates
with one layer above and one below. The theoretical OSI model is presented in the Figure 2.

Generally, the OSI model does not apply in practice in a strict manner — many protocols can
be precisely associated with some layers, others provide functionality of several layers (e.g. TCP is
generally assigned to the transport layer while it is also responsible for a graceful close of sessions
which, regarding to the OSI, should be the duty of the session layer). Some layers may be completely
neglected — lots of communication takes place without compression or encryption at all (it is a do-
main of the presentation layer). In spite of that, the OSI is a good model to understand how network
protocols should be designed, how they should function and communicate with each other in theory.

Usually, network applications programmer is not concerned about 1-3 layers. They are either
related to hardware or completely handled by the operating system. Using Berkley Sockets, the
programmer can choose transport layer protocol (that is TCP or UDP) and build his or her own
application protocol on top of it. That protocol can obviously provide functionality known from
layers 5 and 6 of the OSI model (and so network protocol offers compression).

2.2 TCP vs. UDP

The Transmission Control Protocol (TCP) allows exchanging data between two programs in a reli-
able way. The TCP allows clients to establish connection with a server and it ensures that data is
delivered exactly in the same order that it was sent. Every piece of transmitted information has to be
acknowledged by the recipient.

Alternative to TCP is User Datagram Protocol (UDP). It is a much more simple protocol. It
allows the sending of independent packets called datagrams. Unlike TCP, UDP does not provide
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Figure 2: ISO model

reliability. Some datagrams may be lost, duplicated or received in a wrong order. However, it carries
checksum with every datagram, so it is very unlikely that data will be delivered across the network
malformed — it will either reach its destination or be lost. UDP also does not provide connection
mechanisms known from TCP — datagrams may be sent and received without a connecting proce-
dure.

Advantages of TCP are indisputable. Nevertheless, the price that is paid for its features may
be overwhelming — efficiency. In TCP everything must be acknowledged. That generates more
network traffic. What is more important, when one packet is lost or reaches its destination in a sig-
nificantly longer time, other urgently needed data may have to wait. Those reasons almost always
preclude usage of TCP in real-time applications. Physics simulations mostly can afford some level of
packet loss, whereas awaiting for stray network packets or demand of retransmission is unacceptable.

3 Problem Analysis
Although data exchange in networked physics simulation may not seem to be a difficult task, there
are some issues that every network programmer encounters. This section discusses them.

3.1 Thin Server Approach
The main loop of standard non-networked physics simulation is shown in Algorithm 1. now() func-
tion returns current time in high resolution. processInput() serves keyboard and mouse events.
physics(ti−1, ti) performs update of physical attributes of each object (such as position, velocity,
etc.) from time ti−1 to time ti. render() draws everything that is needed to be seen on the screen.
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1 t0 := now();
2 for i := 1 to ∞ do
3 ti := now();
4 processInput();
5 physics(ti−1, ti);
6 render();

Algorithm 1: Main loop of non-networked physics simulation

Basically, the idea of Thin Server is as follows: every client deals only with physics of one object
it controls (e.g. it applies force to a specified object when proper keys are pressed on the keyboard).
After each physics update it sends information to the server about physical attributes of its object.
The server broadcasts this information unchanged to other clients, who update the attributes in their
simulation.

The Thin Server method makes an assumption that each client has one assigned object and its
interactions hardly ever influence other objects. This assumption is reasonable when considering e.g.
flight simulators — planes scarcely ever collide with each other and if they do, the effect is destructive
and behaviour of planes wreckages after collision is not so important. First person shooter games
with a static environment also may meet this limitation. After all, players who shoot each other do
not collide with others too often. On the other hand, we can imagine a computer simulation which
allows each client to apply force to arbitrarily chosen object. The Thin Server method cannot be
applied in such situation.

It is worth mentioning that dividing physics at each client may be a huge efficiency gain. Every
client is concerned about its own object only and it does not have to waste time to compute other
objects’ physical attributes.

A major disadvantage of this approach is the possibility of cheating. There is no control over the
data that a client transmits. If the client with bad intentions modified an application code, it could
arbitrarily change its object’s attributes, which is often unacceptable (imagine a situation where an
evil flight simulation cheater can freely change his plane’s position and velocity regardless of the law
of physics). This issue usually forces a completely different approach.

3.2 Thin Client Approach
To avoid cheating, the server has to become authoritative over physics. An exciting idea comes to
mind — let us make the client a thin terminal, so its responsibilities include only two tasks. First
is handling input and sending information about it to the server. Second is receiving data about the
objects from the server and render the scene on the screen. Thereby, only the server is responsible
for the physics. There is no chance for cheating, as it is known from the Thin Server Approach. It
is important to make sure that the server keeps up with computing the physics, for that may be the
bottleneck.

Packets clients sent in this method usually comprise bits denoting whether specified keys on
the keyboard are pressed at the moment. Simulations that use a mouse must also send information
about the mouse movement. Packets that go the other way consist of description of objects (physical
attributes like position and velocity are the most important, yet other properties such as colour or
shape may be sent as well).

Both client and server can work multi-threaded. On the server side, one thread can compute
physics and transmit update data at fixed time intervals, while a second thread receives data from
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clients. On the client side, one thread can handle keyboard events and transmit data, while the
second receives data from the server and renders the virtual world. In practice, fixed time intervals
between transmitted packets are good (yet they have to be chosen, depending on the specific needs).

3.3 Physics at Client’s Side

Thin Client may also be modified, so it is not so thin anymore — it can compute simplified physics
on his own during the time intervals between updates. When a packet comes from the server, the
client corrects its state. It is very convenient, because it makes receiving data rate and screen redraw
rate independent (so that world can be rendered with more frames per second).

3.3.1 Smoothing

Irregular network latencies constitute another issue. Physics updates, that the server sends with fixed
time rate, may be received by the client at irregular intervals. This may cause unexpected jumpy
movement of objects at the client’s side.

One of the possible solutions to this problem is application of smoothing algorithm. Exponen-
tially Smoothed Moving Average (described, inter alia, in [13]) is very common and easy to im-
plement, thus is described in this paper and implemented in engine. When the client
receives update of property x̄k from the server, it applies weighted mean with current value x̄k−1 of
property that is being corrected. A priori chosen constant α ∈ (0,1] is used as a weight:

x̄k := αx̄k +(1−α)x̄k−1

where property is usually up to three dimensional vector of position or velocity: x̄ = [xx,xy,xz].
As the updates come incessantly, a smoothing effect is achieved.

3.3.2 Physics Rewinding

One may be not satisfied with the smoothing algorithm as a solution to the problem. After all, it is
just an attempt to deceive the senses, using smoothness for precision trade-off.

Knowing the frequency with witch the server sends updates with, the client can apply corrections
in a more clever way. Updates have to be numbered, so the client can reject out of order packets and
determine expected time of the next packet. If the update comes earlier than the client expected, it
applies received data verbatim (so called “snap” occurs). Otherwise, the client computes physics()
from expected receive time to the current time after it receives the packet (this can be interpreted as
rewinding back in time to a designated point and recomputation of the physics). Wisely choosing
expecting times of approaching updates, snapping can be significantly limited. However, it intro-
duces some prediction of physics on the client’s side that might go a little bit wrong — when the
client is not aware of the significant input changes of other clients. This is the reason why it is a good
idea to use a smoothing algorithm together with physics rewinding as they are completely orthogonal
mechanisms.
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1 (lastSeq, data) := waitForUpdate();
2 updateExpectedAt := now() + updatePeriod;
3 while true do
4 (seq, data) := waitForUpdate();
5 if seq ≤ lastSeq then
6 continue;

7 if seq 6= lastSeq +1 then
8 updateExpectedAt := updateExpectedAt + updatePeriod · (seq − lastSeq −1);

9 lastSeq := seq;
10 applyDataFromUpdate(data);
11 if now() < updateExpectedAt then
12 updateExpectedAt := now() + updatePeriod;

13 else
14 physics(updateExpectedAt, now());
15 updateExpectedAt := updateExpectedAt + updatePeriod;

Algorithm 2: Receiving and applying corrections in physics rewinding method

Pseudo-code of physics rewinding method is shown in Algorithm 2. Note that waitForUpdate()
function halts execution of the thread until it receives update from the server. It returns a sequence
number of received update and the data that is to be applied with applyDataFromUpdate() function.
updatePeriod is a constant determined beforehand with the server. Of course, handling input,
sending data to the server, continued physics computation and rendering takes place in another thread.

3.4 Client Side Prediction

All previously presented mechanisms have a disadvantage. Namely, when a simulation participant
presses keys on the keyboard, the effect is seen on the screen after some time which is equal to the
network latency (time that packet needs to reach the server and come back).

The Client Side Prediction is a mechanism which resolves that issue. The basic idea is that the
client reacts on its input immediately, predicting what is to be happening on the server. Nonetheless,
assumption of “one client – one object” is needed again to perform this method as well as some
major changes in both client’s and server’s architecture. This is the reason why when designing

project, it was decided not to include this mechanism.
Article [3] concisely covers this issue.

3.5 Compression

Server updates can describe quite a lot of objects. Unfortunately, the packet size is limited by the
Maximum Transmission Unit (MTU), which is imposed by the medium (e.g. MTU for Ethernet is
1500 bytes). IP and UDP headers have to be included too, so the limitation gets even more strict.
Some protocols are very cautious — DNS uses UDP only if data length does not exceed 512 bytes
(as defined in section 4.2.1 of [8]).

This is where compression comes to the rescue. General lossless compression of update packets
is a common way to keep the size of packets low.
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3.5.1 Delta-Compression

Analyzing the content of the update packets, it may be noted that subsequent packets are largely the
same. Assuming that the client has received the last update, server can send only the differences
between the last and current packet (so called Delta-Compression). This allows the reducing of the
amount of transferred data, but on the other hand, makes the transmission less resistant to packet
loss. Constant n needs to be adjusted so that every n-th update goes without Delta-Compression
mechanism (to resynchronize clients that has lost some packet).

Let A = (a1,a2, . . . ,an) and B = (b1,b2, . . . ,bm) be sequences of bits. Let ⊕ be an operator
described with the following table (it is a well-known XOR operator):

⊕ 0 1
0 0 1
1 1 0

it may be also intuitively defined for sequences:

A⊕B =


(a1⊕b1,a2⊕b2, . . . ,an⊕bn) if n = m
(a1⊕b1,a2⊕b2, . . . ,an⊕bn,bn+1,bn+2, . . . ,bm) if n < m
(a1⊕b1,a2⊕b2, . . . ,am⊕bm,am+1,am+2, . . . ,an) if n > m

To transmit the differences only, the server stores the last sent update L = (l1, l2, . . . , ln) for each
client. Instead of sending the whole current update C = (c1,c2, . . . ,cm), the server computes L⊕C,
compresses it and finally transmits. Note that since li = ci for many values of i (due to assumption
that update data has not changed much), entropy of C⊕L is low. Therefore compression is much
more efficient.

3.5.2 Floating-Point Precision

Physical properties of objects are usually up to 3-dimensional vectors of real numbers. Computers
represent real numbers, using floating point — IEEE 754-2008 [5] is the most widely-used standard.
In this subsection the main concepts of floating-point representation will be presented, so one can
easily understand how to dispense the unnecessary precision to reduce the size of data that is needed
to be transferred.

The basic idea is to express the number so it can be written according to the following formula:

a = (−1)s · c ·2q

where:

s – sign (two possible values: 1 denotes negative, 0 when positive)
c – significand (coefficient, mantissa), c ∈ [1,2)
q – exponent

Storing the sign in a computer memory is not a problem at all — only one bit is needed.
Mantissa can be written as a binary fixed-point number. As it is normalized (from the [1,2) in-

terval), its binary representation always starts with 1 followed by the decimal point. Therefore, there
is no reason to waste bits in the memory to remember what is before the decimal point. Let’s assume
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that cn bits of the fractional part of significand are stored in the memory — the rest is irretrievably
lost.

Exponent is an integer, which may be negative, positive or zero. qn bits are needed to encode 2qn

different values. To avoid encoding of negative numbers, offset σ is added to the exponent in order
to store it in the memory. Besides, minimum and maximum possible values are reserved and handled
specially. Therefore, minimum and maximum values of the exponent are:

qmin = 1−σ

qmax = 2qn −2−σ

σ is usually selected in a way that both big and small numbers are handled well. When σ = 2qn−1−1,
then the value of the exponent is an integer from [−(2qn−1−2), 2qn−1−1] interval.

When stored exponent is all zeros or all ones, interpretation of the number is special, so that
0, ∞, −∞, NaN and subnormal numbers can be encoded. Let M be a sequence of significand bits.
Following table summarizes floating point representation of real numbers:

q+σ q Value being represented
0 (−1)s ·21−σ ·0.M

1 . . . 2qn −2 1−σ . . . 2qn −2−σ (−1)s ·2q ·1.M
2qn −1 ±∞ when M = 0, NaN otherwise

IEEE 754-2008 defines binary32 format (float type known from C/C++) with following con-
stants: qn = 8, cn = 23, σ = 127. Figure 3 shows an example of encoding a number in binary32
floating-point standard.

Figure 3: Representation of 3.2 in binary32 format

Knowing how real numbers are stored in the computer memory, the network programmer can
write his own implementation of floating-point numbers. qn, cn, σ constants can be arbitrary chosen
to meet the current needs. Some specific floating point numbers can be packed into 16- or even
8-bit variables. engine offers fair implementation where the programmer defines the
aforementioned parameters.
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4 Project
engine has been designed as a reusable library for both client and server programs.

4.1 Class Diagram
Diagram of classes, which are important for the user, is shown in the Figure 4. Only public and
the most significant attributes and operations have been included. Client and Server are singleton
instances of CClient and CServer classes (it is not explicitly shown in the diagram).

4.2 API
Usage of library is very simple. In the server program, the programmer has to run
CServer::create() function in the first place. Its declaration is as follows:
bool CServer::create(

int keysCount ,
void (*eventsProcessor)(const CEvent& e, ConnectionID id),
bool (*doPhysics)(Time , Time),
bool (*clientConnected)(CConnection* c),
bool (*clientDisconnected)(CConnection* c));

keysCount is an important parameter. It must be the same at the server and all the clients. Other
parameters are function pointers. eventsProcessor is called when event occurs. doPhysics is the
physics function which performs the simulation step. clientConnected and clientDisconnected
are called when any client joins or leaves the simulation. None of the function pointers described
above can be NULL.

After the server is created, the programmer can set various properties, according to the current
needs, using those functions:
bool CServer::setCompressionMethod(CompressionMethod::Type compressionMethod);
bool CServer::setMotdBuffer(const byte* motdBuf , uint motdBufLen);
bool CServer::enableRelativePositions();
bool CServer::setSendingNeighbouringObjectsOnly(float contigousOnly);
bool CServer::setUpdatePeriod(Time updatePeriod);
bool CServer::setClientsInformationPeriod(int clientsInformationPeriod);
bool CServer::setPrecision(const CPrecision& first , const CPrecision& second , const

CPrecision& third , const CPrecision& fourth);

Then the server should call Server::listen(Port port) and execute the main loop, using
CServer::simulationLoop(). When the simulation is over, the program returns from the function.
The programmer should call CServer::destroy() in order to clean everything up.

Programming the client program is very similiar. CClient::create() is defined as:
CClient::create(

int keysCount ,
void (*eventsProcessor)(const CEvent& e),
bool (*doPhysics)(Time , Time),
bool (*doRender)(),
bool (*doInput)(),
bool (*doLoadStuff)());

New function pointers are essential. doInput’s task is to handle all the keyboard and mouse events.
The client might also want to load some data after connecting to the server — doLoadStuff function
is called then.

Parameters setting is done using the following methods:
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bool CClient::enableSmooth(float posSmoothFactor , float posSmoothLimit , float rotSmoothFactor ,
float rotSmoothLimit , float velSmoothFactor , float velSmoothLimit , float rovSmoothFactor ,
float rovSmoothLimit);

bool CClient::enablePhysicsRewinding();
bool CClient::setOnConnectionBuffer(const byte* onConnectionBuf , uint onConnectionBufLen);
bool CClient::enableRelativePositions();
bool CClient::setPrecision(const CPrecision& first , const CPrecision& second , const

CPrecision& third , const CPrecision& fourth);

When parameters are set up, the client calls CClient::connect(const string&, Port) func-
tion which connects to the server. If no error occurred, the client should proceed with the simula-
tion — call CClient::simulationLoop() and CClient::destroy() at the end.

Every function, which returns bool type, returns false when an error has occurred. Otherwise,
true is returned.

Code documentation, which is distributed with source code of the library, describes all the classes
and methods in details.

4.3 Network Protocol
New network protocol has been designed for the project. It operates in the application layer of OSI
model, although it provides features such as establishing connections or time-outs (which belong to
lower layers).

network protocol is built on top of UDP protocol. The first byte of each datagram
denotes the type of the message that is being transmitted. Following subsections describe when
which kind of message has to be sent. Detailed construction of every packet type is described in the
section 4.3.6.

4.3.1 Establishing Connection Procedure

TCP protocol uses the so-called Three Way Handshake method in order to establish TCP session
(connection) [9]. Programs which use engine perform a similar procedure, yet the pro-
tocol involves also some higher level data transfer. Figure 5 intuitively presents which messages are
being sent while establishing a new connection with the server.

SYN packet indicates an inclination of establishing connection. The server notes this fact and
replies with SYNACK packet. Afterwards, the client sends CLIENT_INFO packet — containing in-
formation about the client. Server replies with SERVER_INFO (information about the server). Once
the client receives SERVER_INFO, it prepares itself to participate in the simulation (e.g. initializes
window, graphics). When the client is ready to start the simulation, it sends a LOADED packet,
which is acknowledged with a WELCOME message — connection is established now.

If either side waits too long for the response, retransmission occurs. After several unanswered
retransmissions, an error is returned.

If an error occurs at any stage of the connection procedure, the RST packet is being sent. Side
which receives RST should immediately terminate the transmission and consider the connection as
closed.

4.3.2 Data Exchange Phase

Once the connection is established, simulation data exchange starts. Every packet in this phase is
being sent asynchronously with a specified frequency. The client sends KEYS packet, which com-
prises data about currently pressed keys on the keyboard. The server transmits UPDATE (description
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Figure 5: Establishing connection

of all objects that participate in the simulation) and CLIENTS_INFO — additional data about clients
which is not so important and can be transmitted with less frequency.

4.3.3 Events

Two types of events are supported: regular and reliable. Some datagrams might be lost e.g. due to
a network congestion. The side which sends a reliable event (RELIABLE_EVENT), waits for an
acknowledgement (EVENT_ACK). After a definite period of time, when acknowledgment has not
arrived, the event packet is deemed to be lost and subjected to retransmission. The reliable event is
being retransmitted until the acknowledgment is received. Regular event (REGULAR_EVENT) is
sent once and no acknowledgment is replied. Therefore, it is discouraged to put critical data within
it.
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Both server and client can send events.

4.3.4 Pings and Latency Measuring

The server sends PING messages occasionally in order to make sure that the client has not discon-
nected and measure the network latency. The client responds with PONG packet — the server notes
the elapsed time interval.

With frequency defined by the application programmer, the server transmits additional data about
clients with their network latencies (CLIENTS_INFO). Network games may use this packet to trans-
mit nicknames and scores of players, as those values do not change very often.

4.3.5 Finalizing Connection

When a side wants to quit the simulation and terminate the connection, it sends FIN packet. The
other side does not reply anyhow afterwards.

4.3.6 Packets Description

For the description of packets, BNF notation is used with the following data types (terminals):

• byte – one byte

• int16 – two bytes in network byte order

• int32 – four bytes in network byte order

• 0x00, ..., 0xff – one byte written hexadecimally

Additionally, buffer type is convenient — one unsigned byte n denoting length of the buffer
followed by n bytes of the buffer data. It is formally defined as follows:
buffer ::= <n> byte{n}
<n> ::= byte

As shown in the above example, the following convention is used: number in curly brackets
denotes the number of repetitions of the symbol.

The root of the BNF tree is NETWORK_PACKET:
<NETWORK_PACKET > ::= <SYN> | <SYNACK > | <CLIENT_INFO > | <SERVER_INFO > | <LOADED > | <WELCOME > |

<KEYS > | <UPDATE > | <CLIENTS_INFO > | <REGULAR_EVENT > | <RELIABLE_EVENT > | <EVENT_ACK > |
<PING > | <PONG > | <FIN> | <RST>

The above rule simply lists types of packet types. Each of these packet types has the first byte
reserved for the sake of explicitness.
<SYN> ::= <P_SYN > <client_id >
<P_SYN > ::= 0x00
<client_id > ::= int16

The client has to draw a random 16-bit identification number (client_id) before connecting. It
is contained in SYN packet. This number will be used throughout the whole communication process
to identify the client.
<SYNACK > ::= <P_SYNACK > <client_id >
<P_SYNACK > ::= 0x01
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SYNACK packet comes from the server and indicates that the server agrees to accept the client
under specified ID.
<CLIENT_INFO > ::= <P_CLIENT_INFO > <client_id > <keysCount > <relativePos >

<precisionDescription >{4} <onConnectionBuffer >
<P_CLIENT_INFO > ::= 0x05
<keysCount > ::= byte
<relativePos > ::= byte
<precisionDescription > ::= <precType > <precMantissaSize > <precExponentSize > <precExponentShift >
<precType > ::= byte
<precMantissaSize > ::= byte
<precExponentSize > ::= byte
<precExponentShift > ::= byte
<onConnectionBuffer > ::= buffer

The client sends information about its properties with CLIENT_INFO message. It specifies the
number of keys that, when pressed, are significant to the simulation, and therefore are being syn-
chronized through the network (keysCount). relativePos is 0x01 if transfered positions of objects
are to be expressed as relative to the observer; 0x00 otherwise.

Four precisionDescription blocks of data describe floating-point precision levels. Each of
them consists of precType (0x00 for float, 0x01 for double, 0x02 for custom), precMantissaSize,
precExponentSize, precExponentShift (three basic floating-point precision parameters which
where described in section 3.5.2). If precType denotes float or double types, other parameters are
insignificant and set to zero.

In addition, the packet contains onConnectionBuffer — general purpose, binary buffer which,
by design, should contain an additional information about the client itself.
<SERVER_INFO > ::= <P_SERVER_INFO > <client_id > <compressionMethod > <motd > <updatePeriod >
<P_SERVER_INFO > ::= 0x06
<compressionMethod > ::= byte
<motd > ::= buffer
<updatePeriod > ::= int32

The server replies with SERVER_INFO, which comprises compressionMethod (0x00 for no com-
pression, 0x01 for standard compression, 0x02 for delta-compression), motd buffer (“MOTD” stands
for Message of the Day) and updatePeriod — period server sends UPDATE packets with (expressed
in milliseconds).
<LOADED > ::= <P_LOADED > <client_id >
<P_LOADED > ::= 0x07

LOADED message states that the client is ready to participate in the simulation. It does not carry
any more information besides the client’s identification number.
<WELCOME > ::= <P_WELCOME > <client_id >
<P_WELCOME > ::= 0x08

The server acknowledges that the client entered the simulation with WELCOME message.
<KEYS > ::= <P_KEYS > <client_id > <keysSeq > <keysData >
<P_KEYS > ::= 0x0a
<keysSeq > ::= int32
<keysData > ::= byte{ceil(keysCount/8)}

The client constantly sends KEYS packets to inform the server which keys on the keyboard are
being currently pressed. Packets are numbered with keysSeq field so that the server can drop packets
which are received in the wrong order. keysData comprises keysCount bits which are packed into
dkeysCount8 e bytes. Therefore, up to 7 oldest bits of the last byte may be unused and therefore must
be set to zeros.
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<UPDATE > ::= <P_UPDATE > <client_id > <updateSeq > <assignedTo > <objects >
<P_UPDATE > ::= 0x09
<updateSeq > ::= int32
<assignedTo > ::= int16
<objects > ::= <objectsCount > <object >{objectsCount}
<objectsCount > ::= byte
<object > ::= <object_id > <dimensions > <precisionLevels > <pos> <rot> <vel> <rov> <buf>

<keysData >
<object_id > ::= int16
<dimensions > ::= byte
<precisionLevels > ::= byte
<buf> ::= buffer

UPDATE is the most substantial packet — it describes properties of all objects in the simulation.
It is being sent constantly by the server with specified period. updateSeq numerates the packets so
that packet received the in wrong order can be dropped by the client. assignedTo is an identification
number of the object which the client is assigned to. Up to 255 objects can be synchronised. Each
of object’s description consists of two special bytes (dimensions and precisionLevels) followed
by the properties of the object: position (pos), rotation (rot), velocity (vel), rotational velocity
(rov), multi-purpose binary buffer (buf) and information about pressed keys (keysData, represented
exactly as in KEYS packet).

Both dimensions and precisionLevels bytes are divided into 4 parts — 2 bits for each part.
Figure 6 demonstrates this partition. The first part (less significant bits) is reserved for position,
second for rotation, third for velocity and fourth (the most significant bits) for rotational velocity.
Each pair of bits can take four different values: 00, 01, 10, 11. Pairs in dimensions byte denote
respectively 0D, 1D, 2D, 3D — number of dimension of the property. Pairs in precisionLevels
byte denote respectively the first, second, third and fourth precision level (all four precision levels
have been agreed during the connection establishing).

Figure 6: Denotation of individual bits in dimensions and precisionLevels bytes

Defining pos, rot, vel and rov strictly in BNF notation is quite problematic. The resulting
rules would be certainly long, tedious and unreadable. Length and interpretation of each property is
dependant on the value of proper pairs of bits in dimensions and precisionLevels bytes and the
definition of the precision levels.
<CLIENTS_INFO > ::= <P_CLIENTS_INFO > <client_id > <clientsCount > <client >{clientsCount}
<P_CLIENTS_INFO > ::= 0x05
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<clientsCount > ::= byte
<client > ::= <clientBuffer > <latency >
<clientBuffer > ::= buffer
<latency > ::= int16

CLIENTS_INFO packets are being sent much rarer than UPDATE messages and provide an addi-
tional information about all clients which participate in the simulation. A description of each client
consists of a binary multi-purpose buffer named clientBuffer and 16-bit integer latency which
estimates the network lag between the client and the server.

<REGULAR_EVENT > ::= <P_REGULAR_EVENT > <eventData >
<P_REGULAR_EVENT > ::= 0x0b
<eventData > ::= buffer

<RELIABLE_EVENT > ::= <P_RELIABLE_EVENT > <eventID > <eventData >
<P_RELIABLE_EVENT > ::= 0x0c
<eventID > ::= int16

<EVENT_ACK > ::= <P_EVENT_ACK > <eventID >
<P_EVENT_ACK > ::= 0x0d

Events mechanism has been precisely described in 4.3.3 section. Note that REGULAR_EVENTs do
not need any identification numbers, whereas RELIABLE_EVENTs and the acknowledgments do.

<PING > ::= <P_PING > <client_id > <data >
<P_PING > ::= 0x03
<data > ::= int16

<PONG > ::= <P_PONG > <client_id > <data >
<P_PONG > ::= 0x03

The server uses PING packets to measure the time between the packet transmision and the recep-
tion time of PONG.

<FIN> ::= <P_FIN >
<P_FIN > ::= 0x02

<RST> ::= <P_RST >
<P_RST > ::= 0x04

FIN packet denotes a request of graceful connection termination. RST message indicates that
a fatal error has occured and the side has dropped the connection.

5 Implementation

engine consists of a total of 5623 lines of C++ code (4001 in source files and 1622
in headers). Efforts were made to write the library in a cross-platform way, so that it runs on as
many operating systems as possible. It was tested under Windows and Linux only, although it should
compile and run with no major problems on other UNIX-like operating systems. No integrated
development environment was used, so the library should compile without any third-party software
besides basic GNU tools. Makefile is supplied with the source code to make the compilation process
easy.
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5.1 Examples
An example application is developed along with the library source code. It demonstrates the usage
of the network engine — it is recommended to study the example carefully before developing own
network simulation using . The example application comprises two one-file programs:
server_example.cpp and client_example.cpp.

In order to test the simulation via a computer network, server_example program must run on
one of the machines. After it is started, client machines may run client_example program (server’s
IP address must be passed through the command line argument).

Sample programs provide very simple physics simulation that involves multiple balls, which
move without gravity and collide with each other. When a client connects, a new coloured ball is
created. The client can apply force to his ball — it colours all the balls it collides with.

Two big listings will be discussed in this section. These are fragments of the example programs
(a bit shortened to emphasize how to use the library’s API and not to focus on technical details). Full,
compilable source files are disturbed with the source code of library in the example
directory.

5.1.1 The Server Example

1 bool physics(Time last , Time rightNow)
2 {
3 float d = float(rightNow - last)/10000;
4

5 FOR_EACH_SERVER_OBJECT (x)
6 /* [...] physics goes here */
7 FOR_EACH_SERVER_OBJECT_END
8

9 // collisions
10 FOR_EACH_SERVER_OBJECT (x)
11 FOR_EACH_SERVER_OBJECT (y)
12 /* [...] collisions go here */
13 FOR_EACH_SERVER_OBJECT_END
14 FOR_EACH_SERVER_OBJECT_END
15

16

17 // broadcast events randomly
18 if (rand()%500 == 0)
19 {
20 CRegularEvent ev(11);
21 //CReliableEvent ev(11);
22 strncpy((char*)ev.getBuf(), "HelloWorld", 11);
23

24 Server.sendEvent(ev);
25 }
26

27 return true;
28 }
29

30

31

32 bool clientConnected(CConnection* c)
33 {
34 // create new object for the client
35 CObject* obj;
36 ObjectID clientObject = Server.objectsManager.createObject(
37 Dimensions::Dim2D , Dimensions::Dim0D , Dimensions::Dim2D , Dimensions::Dim0D ,
38 PrecisionLevel::Second , PrecisionLevel::First , PrecisionLevel::Third ,

PrecisionLevel::First);
39

40 cout << "Created object is " << uint(clientObject) << endl;
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41

42 if ((obj = Server.objectsManager.getObject(clientObject)) == NULL)
43 return false;
44

45 // assign positions and buffers
46 obj->pos.x = float(rand()%600 + 100);
47 obj->pos.y = float(rand()%600 + 100);
48 obj->vel.x = float(rand()%100)/100;
49 obj->vel.y = float(rand()%100)/100;
50

51 static int index = 1;
52 obj->buf = new byte[2];
53 obj->buf[0] = index++;
54 obj->buf[1] = 1;
55 obj->bufLen = 2;
56

57 if (index == 7)
58 index = 1;
59

60 // assign object to the client
61 c->assignObject(clientObject);
62

63 // copy ’on connection buffer’ to ’connection information’ buffer (nickname)
64 c->connInfoBufLen = c->onConnectionBufLen;
65 c->connInfoBuf = new byte[c->connInfoBufLen];
66 memcpy(c->connInfoBuf , c->onConnectionBuf , c->onConnectionBufLen);
67 return true;
68 }
69

70

71

72 bool clientDisconnected(CConnection* c)
73 {
74 CObject* assignedTo = c->getAssignedTo();
75 if (assignedTo)
76 Server.objectsManager.destroyObject(assignedTo ->getId());
77 return true;
78 }
79

80

81

82 void eventsProcessor(const CEvent& e, ConnectionID id)
83 {
84 }
85

86

87

88 int main()
89 {
90 // ********************************************************************
91 // * Begin of Server Configuration
92 // ********************************************************************
93

94 if (!Server.setCompressionMethod(CompressionMethod::DeltaCompression))
95 exit(1);
96

97 Server.setPrecision(
98 CPrecision(PrecisionType::IEEE_float),
99 CPrecision(PrecisionType::Custom , 11, 4, 0),

100 CPrecision(PrecisionType::Custom , 11, 4, 7),
101 CPrecision(PrecisionType::IEEE_float)
102 );
103

104 if (!Server.create(5, eventsProcessor , physics , clientConnected , clientDisconnected))
105 exit(1);
106

107 // ********************************************************************
108 // * End of Server Configuration
109 // ********************************************************************
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110

111 // create 25 balls at the beginning
112 for (int i=0; i<25; i++)
113 {
114 CObject* obj;
115 ObjectID clientObject = Server.objectsManager.createObject(
116 Dimensions::Dim2D , Dimensions::Dim0D , Dimensions::Dim2D , Dimensions::Dim0D ,
117 PrecisionLevel::Second , PrecisionLevel::First , PrecisionLevel::Third ,

PrecisionLevel::First);
118

119 cout << "Created object is " << uint(clientObject) << endl;
120

121 if ((obj = Server.objectsManager.getObject(clientObject)) == NULL)
122 return false;
123

124 obj->pos.x = float(rand()%600 + 100);
125 obj->pos.y = float(rand()%600 + 100);
126 obj->vel.x = float(rand()%100)/100 - 0.5f;
127 obj->vel.y = float(rand()%100)/100 - 0.5f;
128

129 obj->buf = new byte[2];
130 obj->buf[0] = 0;
131 obj->buf[1] = 0;
132 obj->bufLen = 2;
133 }
134

135 if (!Server.listen (41516))
136 {
137 Server.destroy();
138 return 1;
139 }
140

141 Server.simulationLoop();
142

143 Server.destroy();
144

145 return 0;
146 }

Listing 1: The most important parts of server_example.cpp file

physics (lines 1–28 of Listing 1) is the function where the whole physics simulation is imple-
mented in. Movement of each object has been removed from the listing (line 6) as it is long and
not connected directly with the topic. This sample uses the Euler method to solve trivial motion
equations. It was chosen for simplicity, yet in most cases more advanced methods need to be used to
approximate differential equations solutions (like RK4 method described in [2]). Collision detection
and handling is also cut (it is based on the equations and source code from [10]).

physics function also deals with sending events. With low probability, the server creates a new
CRegularEvent object, fills it with data and transmits to every connected client. CReliableEvent
can be used instead — the server would demand the acknowledgment that the message was not lost
then. The event object does not have to be created dynamically.

When a new client establishes a connection, the clientConnected function is called. It creates
a new object, assigns it to the client and sets the object’s default parameters. It allocates multi-purpose
buffer dynamically (line 52). It is assumed that the client puts his nickname in onConnectionBuf.
In lines 640–66 memory for connInfoBuffer is reserved and nickname is copied there so that other
clients will receive information about the client’s nickname.

Lines 720–78 provide the procedure that is called when the client disconnects. It simply destroys
the client’s object.

The server does not have to receive any events, so eventsProcessor routine is empty.
main function is of course a place where the program starts its execution. First, compression
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method is set (this sample uses delta-compression). Then, precision levels are used. Only three
first levels are actually used, so the fourth one is insignificant. Finally, the server is created with
CServer::create method. Note that function pointers are passed as arguments.

The server also creates 25 new balls before it starts. It sets all the default values, similarly to as
it is done when a new client connects.

When everything is set up, the server can listen for new connections. The port number (41516) is
passed as an argument to the CServer::listen function. Immediately afterwards, the main loop of
the simulation is called. Most of the application time is spent in this function. When the simulation
is finished (that is when physics returns false), the function returns and the server is destroyed and
the program exits with error code 0.

5.1.2 The Client Example

1 bool physics(Time last , Time rightNow)
2 {
3 float d = float(rightNow - last)/10000;
4

5 FOR_EACH_CLIENT_OBJECT (x)
6 /* [...] physics goes here */
7 FOR_EACH_CLIENT_OBJECT_END
8

9 // collisions
10 FOR_EACH_CLIENT_OBJECT (x)
11 FOR_EACH_CLIENT_OBJECT (y)
12 /* [...] collisions go here */
13 FOR_EACH_CLIENT_OBJECT_END
14 FOR_EACH_CLIENT_OBJECT_END
15

16

17 // print information to the stdout
18 static Time displayInfoCounter = 0;
19 displayInfoCounter += rightNow - last;
20 if (displayInfoCounter >= 1000000)
21 {
22 displayInfoCounter -= 1000000;
23

24 // clear console;
25 for (int i=0; i<25; i++)
26 cout << endl;
27

28 cout << "List of players and latencies:" << endl;
29

30 for (int i=0; i<Client.connectionsInformationCount; i++)
31 {
32 for (uint j=0; j<Client.connectionsInformation[i].bufLen; j++)
33 cout << Client.connectionsInformation[i].buf[j];
34 cout << ": " << Client.connectionsInformation[i].latency << endl;
35 }
36 }
37

38 return true;
39 }
40

41

42

43 bool render()
44 {
45 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
46

47 glMatrixMode(GL_MODELVIEW);
48 glLoadIdentity();
49

50 FOR_EACH_CLIENT_OBJECT (x)
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51 /* [...] draw ball at x->pos */
52 FOR_EACH_CLIENT_OBJECT_END
53

54 SDL_GL_SwapBuffers();
55

56 return true;
57 }
58

59

60

61 bool input()
62 {
63 SDL_Event event;
64

65 while (SDL_PollEvent(&event))
66 {
67 switch (event.type)
68 {
69 case SDL_KEYDOWN:
70 if (event.key.keysym.sym == SDLK_w)
71 Client.keys[0] = true;
72 if (event.key.keysym.sym == SDLK_s)
73 Client.keys[1] = true;
74 if (event.key.keysym.sym == SDLK_a)
75 Client.keys[2] = true;
76 if (event.key.keysym.sym == SDLK_d)
77 Client.keys[3] = true;
78 if (event.key.keysym.sym == SDLK_SPACE)
79 Client.keys[4] = true;
80

81 if (event.key.keysym.sym == SDLK_ESCAPE)
82 return false;
83 break;
84

85 case SDL_KEYUP:
86 if (event.key.keysym.sym == SDLK_w)
87 Client.keys[0] = false;
88 if (event.key.keysym.sym == SDLK_s)
89 Client.keys[1] = false;
90 if (event.key.keysym.sym == SDLK_a)
91 Client.keys[2] = false;
92 if (event.key.keysym.sym == SDLK_d)
93 Client.keys[3] = false;
94 if (event.key.keysym.sym == SDLK_SPACE)
95 Client.keys[4] = false;
96 break;
97

98 case SDL_QUIT:
99 return false;

100 }
101 }
102 return true;
103 }
104

105

106

107 bool load()
108 {
109 return true;
110 }
111

112

113

114 bool prepareGraphics()
115 {
116 /* [...] initalize OpenGL and window in SDL, return false on error */
117 return true;
118 }
119
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120

121

122 void eventsProcessor(const CEvent& e)
123 {
124 cout << "Got event , message is: " << e.getBuf() << endl;
125 }
126

127

128

129 int main(int argc , char* argv[])
130 {
131 // ********************************************************************
132 // * Begin of Client Configuration
133 // ********************************************************************
134

135 if (!Client.enableSmooth (0.9f, 200.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f))
136 exit(1);
137

138 if (!Client.enablePhysicsRewinding())
139 exit(1);
140

141 if (!Client.setOnConnectionBuffer(
142 argc <= 2 ? (const byte*)"unknown" : (const byte*)argv[2],
143 argc <= 2 ? 7 : strlen(argv[2])))
144 exit(1);
145

146 Client.setPrecision(
147 CPrecision(PrecisionType::IEEE_float),
148 CPrecision(PrecisionType::Custom , 11, 4, 0),
149 CPrecision(PrecisionType::Custom , 11, 4, 7),
150 CPrecision(PrecisionType::IEEE_float)
151 );
152

153 if (!Client.create(5, eventsProcessor , physics , render , input , load))
154 exit(1);
155

156 // ********************************************************************
157 // * End of Client Configuration
158 // ********************************************************************
159

160 if (!Client.connect(argc > 1 ? argv[1] : "localhost", 41516))
161 {
162 Client.destroy();
163 return 1;
164 }
165

166 if (!prepareGraphics())
167 {
168 Client.destroy();
169 return 1;
170 }
171

172 Client.simulationLoop();
173

174 Client.destroy();
175 SDL_Quit();
176

177 return 0;
178 }

Listing 2: The most important parts of client_example.cpp file

physics routine (lines 1–39 of Listing 2) on the client’s side is very similar. However, no events
are being sent. Additionally, information about all the clients is being displayed once every second.

render function (lines 43–57) is being called repeatedly to draw graphics on the computer
screen. It uses OpenGL calls to draw each object. The drawing code has been removed from the
listing, for it is not closely related to the network issues.
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Keyboard events are handled in input function with SDL mechanisms. Vector Client.keys is
being updated there so that engine can inform the server about keys which are pressed
on the client’s keyboard.

The sample program is so simple that it does not require any files to be loaded on connection. In
most cases, some files need to be loaded (such as 3D models, textures). It should be done inside the
load function.

The content of prepareGraphics is not so interesting, so it has been cut.
The client handles coming events in eventsProcessor function. It merely prints the message

content to the standard output.
main function, like on the server side, prepares the communication parameters and enables im-

portant mechanisms. First, smoothing algorithm is enabled (and proper constants are defined). Then,
physics rewinding algorithm is enabled. Later, connection buffer is set (it contains nickname, which
is passed through a command-line argument. If no argument was passed, “unnamed” value is pre-
sumed). Precision levels must match with those defined by the server. After such preparations, the
client can initialize Client object and connect to the server.

The client stays in the simulationLoop until input, physics or render function return false
or a problem on the server’s side occurs.

6 Discussion and Conclusions
The goal of this paper has been achieved. ’s design is robust and the implementation
works satisfactorily. Developing real-time network simulations and games with this library is much
easier. A fair compromise has been reached between functionality and generality — the programmer
can easily adjust multi-functional buffers to transmit any kind of data, according to the current need.
Easy to understand examples and basic code documentation have been carried out along with the
library, which makes its usage much more comfortable.

Nevertheless, certain parts of the library have not been fully worked out yet. Some effort still has
to be made in order to improve:

• double type handling (Blossom Math does not support vec3 class based on the double preci-
sion floating-point numbers yet)

• subnormal numbers (numbers which are very close to the zero are packed as zero in current
implementation)

• fragmentation — if there are too many objects, it may happen that the UPDATE packet is too
large to be transmitted through the network. It should be fragmented into several smaller parts
then and assembled at the reception. The current project simply assumes that this problem
does not occur

• the client’s awareness about the possible loss of connection. In the current implementation,
the client may not notice the problem when the server suddenly stops responding (e.g. due to
a major network problem)

Practical experiments and tests have been conducted. Unfortunately, it is difficult to clearly
gather the results in a table or plot, because achieved smoothness highly depends on the proper-
ties of a specific application. Some physics simulations may be more chaotic than others (physics
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routine is chaotic when small differences in initial conditions yield much larger divergences in re-
sults). The more chaotic a simulation is, the more vulnerable to network latencies is the application.
However, assuming completely non-chaotic movement, physics rewinding algorithm provides an ex-
cellent smoothness despite even very irregular and high network latencies (whereas naive method
fails).

Studying a behaviour of the sample application has shown that the naive method (when nei-
ther physics rewinding nor smoothing algorithm is enabled) is unsatisfactory at average latencies of
100 milliseconds. With aforementioned mechanisms enabled, a similar level of smoothness-loss is
noticeable when latencies reach 350 milliseconds.
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